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The last step of data analysis can be generally described as using 

tools to convert sequencing data into knowledge and setting it 

into the biological context. In this Chapter of RNA Lexicon, we will 

focus on the most common tertiary data analysis types. Before 

entering tertiary analysis, it is advisable to evaluate the results of 

the previous steps by a set of additional checks. This way, the re-

searcher can ensure that the data that is used as input for the final 

analysis steps has passed all quality control standards.

1. Quality Control Before Entering Tertiary Data Analysis

Quality controlling the results of secondary analysis data ensures that the subsequent tertiary analysis steps are conducted with high 

quality data and scientifically sound conclusions can be drawn from the final output. Quality control at this step is centered on verifying 

that the distribution of reads matches the a priori expectation and that the quantification process will provide an accurate read-out of 

the library input.

Alignment Rates and Read Distribution

Once the data has been aligned to a reference genome, the align-

er will output basic summary statistics. These statistics usually in-

clude the percentage of reads mapped to the reference genome. 

For an ideal RNA-seq library, this metric should be greater than or 

equal to 90 %. While alignment rates close to 70 % may still be 

acceptable depending on the quality of the RNA input and the 

reference genome used, lower alignment rates may indicate seri-

ous issues with the data set.

Using mapping rates as QC parameter is only possible when 

working with organisms which are well-annotated. For non-mod-

el organisms, genome assemblies and annotations are often poor 

and / or incomplete. In this case, low mapping rates are to be ex-

pected and are mostly caused by the reference rather than the 

quality of the data set.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3' mRNA-Seq WTS mRNA-Seq

Pe
rc

en
ta

ge
 o

f M
ap

pe
d 

Re
ad

s

Introns

5'UTR_Exons

3'UTR_Exons

CDS_Exons

mRNA-Seq Read Distribution

Figure 1 | Mapping class attribution for reads generated using 3’ mRNA-Seq or 
Whole Transcriptome mRNA Sequencing (WTS). Reads generated by 3’ mR-
NA-Seq are located towards the 3’ UTR of transcripts, as represented by the 
majority of mapped reads. In contrast, reads obtained for mRNA WTS-libraries 
are distributed evenly across the complete transcripts. Therefore, reads map-
ping to coding sequences should represent the majority of mapped reads and 
the fraction of reads mapping to 3’ UTRs is lower than for 3’-Seq.

One explanation for low mapping rates observed for well-anno-

tated model organisms is that most reads are too short to be 

properly mapped to the genome. This situation can arise when 

highly degraded RNA is used as input, the libraries or sequencing 

run are poor in quality, or when the reads have been trimmed too 

short in length. Another potential explanation for poor mapping 

quality is contamination of input material with foreign RNA. Con-

struction of the first tardigrade genome assembly is a classic and 

well-cited example of how contamination can negatively influ-

ence NGS library composition and lead to false conclusions1, 2. 

Bacterial contamination in tardigrade cultures led to an overesti-

mation in the amount of horizontal gene transfer that occurred in 

this genome.

When low mapping rates are observed, it may be useful to simply 

BLAST a portion of the unmapped reads to uncover their biologi-

cal origin. However, when mapping percentages do not indicate 

any obvious problems, it is useful to visualize read distribution 

across different genomic features.

For example, RSeQC3 can be used to determine the percentage of 

reads which map to the CDS, 5’, and 3’ UTRs or the intronic or in-

tergenic space. Another software with similar functionality is 

Picard tools.

Read distribution is an important metric which enables the user 

to gauge if the library contains expected read fragments. For 3’ 

mRNA-seq library preps such as QuantSeq, most reads should be 

concentrated at the 3’ UTR. In contrast, for whole transcriptome 

sequencing (WTS) library preps most reads typically map across 

the complete transcript body (Fig. 1). A concentration of reads 

towards the 3’ UTR would indicate degradation of the RNA sample 

prior to library generation. The distribution of reads over the 

whole exonic space or the coding sequence depends on whether 

upstream rRNA depletion or poly(A) selection was performed, 

which also has implications on the percentages of intronic and 

intergenic reads.
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For example, data generated from poly(A)-selected RNA typically 

reflects mature mRNAs with a lower intronic and intergenic read 

fraction. Due to the possibility to capture pre-mature mRNA, in-

tron-inclusion events, and the quality of the annotation itself, a 

certain level of intronic and intergenic reads is to be expected, 

whereby the intronic read percentage should be higher than the 

intergenic read percentage. For data generated from rRNA-de-

pleted samples more intronic and intergenic reads are expected 

as this method also captures transcripts occupying this space, 

e.g., long (intergenic) non-coding RNAs (lncRNAs and lincRNAs). 

Further, commonly observed read distribution is also influenced 

by the sample itself. For example, RNA-seq libraries generated 

from blood samples naturally show a higher distribution of reads 

over the intronic and intergenic space4 (Fig. 2).

A high percentage of intronic or intergenic mapping reads for 

samples types that routinely show lower values can indicate ge-

nomic DNA contamination (most common for WTS data, see also 

Chapter 5 – DNase: To Treat or Not to Treat). Further, for data ob-

tained from 3’ -Seq libraries, such statistics can hint to mis-hybrid-

ization where oligo(dT) primers are re-directed from the poly(A) 

tails of mRNAs and prime to A-rich sequences present in rRNA.
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Figure 2 | Feature distribution of mapped reads from Whole Transcriptome 
mRNA-Seq for different sample types. The majority of reads generated from 
both samples type, using RNA from cell lines and from blood samples, map to 
exonic sequences. However, the overall distribution of reads classified as exog-
enic, intronic, and intergenic is changed depending on the sample type.

Ribosomal RNA as Indicator for Library Complexity

Another important metric to examine is the percentage of ribo-

somal RNA (rRNA) mapping reads. While total RNA is composed of 

80-98 % rRNA, quality mRNA-seq libraries typically contain no 

more than single digit percentages of rRNA mapping reads.

For example, 3’ mRNA-Seq libraries, such as QuantSeq libraries, 

typically contain ~3-5 % rRNA mapping reads as mitochondrial 

rRNA transcripts contain poly(A) tails and will be captured by oli-

go(dT) priming together with polyadenylated mRNAs. In contrast, 

rRNA depleted WTS libraries, such as CORALL libraries after deple-

tion with RiboCop, typically contain <1 % rRNA mapping reads. 

The content of reads derived from rRNA observed in sequencing 

experiments is largely dependent on the sample itself, the RNA 

quality and quantity, enrichment, and library preparation meth-

od. This metric should always be interpreted in relation to expect-

ed and typically observed results.

Libraries with a significantly higher fraction of rRNA are usually 

indicative of low complexity. This can be caused by using low 

amounts of RNA, or very low-quality input material which usually 

results in libraires with few detected genes (see Chapter 4 – RNA 

Extraction and Quality Control). If the genome annotation con-

tains rRNA (some do not), the percentage of rRNA can be calculat-

ed from the output of the chosen quantifier. Ribosomal RNA per-

centage can also be calculated by mapping reads separately to 

rRNA-only sequences, which can be more accurate when using 

poor genome assemblies or incomplete annotations. For exam-

ple, this can be done by mapping the reads to an rRNA-only data-

base such as silva5 that contains sequences of many different or-

ganisms. As rRNA is generally highly conserved this approach can 

help in these cases to estimate the rRNA content.

Spike-in Controls to Assess Quantification Accuracy and Transcript Coverage

Until now, the Lexicon section on data analysis has primarily fo-

cused on read distribution across the genome and how these 

summary statistics can be utilized as qualitative control. While 

these statistics provide an adequate overview of the library con-

tent and composition, it does not tell the experimenter how ac-

curate the quantification is. If controls such as ERCC6 spike-ins or 

Lexogen’s Spike-In RNA Variants (SIRVs) are added during library 

preparation, the researcher can use these as a ground-truth data-

set to benchmark quantification performance and detection lim-

its. Further, spike-in controls can be used to fine-tune the entire 

workflow including data analysis tools and parameters to deliver 

highly accurate results for the respective research question.

The addition of artificial spike-ins at a low read percentage does 

not only allow to analyze and compare data sets generated over 

time and across sites, it also offers the possibility to analyze a small 

percentage of data for a fast, initial quality control. The spike-in 

controls are thereby used as a proxy to assess the quality of the 

library generation and sequencing workflow. Should the sample 

show unexpected results for any of the parameters outlined 

above, the artificial controls can help to pinpoint the cause for the 

observed discrepancies. Internal controls can indicate if there was 

a sample-related problem, cross-contamination, or difficulties 

during library generation and sequencing.

https://www.lexogen.com/rna-lexicon-dnase-to-treat-or-not-to-treat/
https://www.lexogen.com/rna-lexicon-rna-extraction-and-quality-control/
https://www.lexogen.com/rna-lexicon-rna-extraction-and-quality-control/
https://www.lexogen.com/sirvs/
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2. Tertiary Data Analysis

Тhe tertiary analysis steps depend heavily on the individual re-

search question that was defined at the beginning of the experi-

ment. Therefore, this part of the analysis is the most flexible during 

the entire project. In the upcoming section, we will therefore fo-

cus on some of the commonly used analyses, namely differential 

expression and functional enrichment analysis. To ensure the suc-

cess of your project by generating the data you need to answer 

your specific research question, it is best to consult a bioinforma-

tician prior to starting the experiment (our Chapter 3 on experi-

mental and data analysis planning has you covered and outlines 

critical considerations for planning your sequencing experiment).

Differentially Gene Expression Analysis

Differential gene expression testing is one of the most common 

tertiary analysis methods utilized for RNA-seq. Differential gene 

expression analysis is used to discover significant quantitative 

gene expression changes under varied biological conditions (Fig. 

3 and Fig. 4).

Practical examples for differential expression studies include 

mapping the transcriptome changes between a wild-type and 

mutant, or expression changes caused by treatment with a specif-

ic stimulus or chemical compound, responses to infection, during 

the course of disease progression or following cell and tissue de-

velopment.

Two popular tools for differential expression analysis are DESeq27 

and edgeR8, both of which operate under the null hypothesis that 

most genes are not differentially expressed.

The Null Hypothesis and Differential Expression Analysis

Differential expression analysis tools are based on statistical 

models to estimate the probability if gene expression changes 

are a result of chance or caused by the varied condition ap-

plied. These models operate under the reasonable assumption 

that most genes are not differentially regulated, and the ob-

served variation is a result of chance. This assumption is also 

referred to as the null hypothesis while the model describing 

this distribution is called the null distribution. During the analy-

sis these tools then calculate how likely it is for each gene that 

the observed variation is caused by chance, meaning how like-

ly it follows the null distribution. This probability is usually ex-

pressed as a value between 0-1, the p-value. A value close to 1 

indicates a high probability that the observed variation is in-

deed caused by chance, while a value close to 0 signifies that 

the null hypotheses, the assumption that a gene is not differen-

tially regulated, should be rejected, and the variation is likely 

causal. Commonly used, but somewhat arbitrary thresholds to 

indicate significant derivation from the null hypothesis are 0.01, 

0.05 or 0.1 (DESeq2 default). However, the more tests you per-

form, and as we are doing this for each expressed gene, there 

will be a lot, the higher the probability that you will also en-

counter a low p-value by chance. When performing for exam-

Figure 3 | Volcano Plot to distinguish significant from non-significant changes. 
Plotting is done based on p-values as measure of significance. Data points 
with low p-values correspond to highly significant changes and are plotted 
towards the top. Significant changes are highlighted in blue, known targets in 
green, and unaffected data points are shown in black. The logarithm of the 
fold change between the two conditions is shown on the x-axis.

Figure 4 | Heatmap visualizing gene expression changes for various cells under 
two different conditions. The heat map represents color-coded expression lev-
els of differentially expressed genes, changes in expression level are shown as 
log2-fold abundances.
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https://www.lexogen.com/rna-lexicon-experimental-and-data-analysis-planning-for-rna-sequencing/
https://www.lexogen.com/rna-lexicon-experimental-and-data-analysis-planning-for-rna-sequencing/
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The p-values obtained using these tools indicate the probability 

of a gene not being differentially regulated. Thus, a small p-value 

leads to a rejection of the null hypothesis and indicates significant 

differences in gene expression. Both DESeq2 and edgeR statistical 

models have been designed to work best with raw read counts6, 7. 

Gene length normalization is unnecessary as testing for each 

gene is performed separately and therefore stays constant. As raw 

read counts do not account for effects such as varied sequencing 

depths, read counts are normalized in a slightly different manner 

depending on the tool. For instance, DESeq2 normalizes read 

counts by multiplying all counts for each sample with a so called 

“size factor”. In concordance with the null hypothesis, these size 

factors are calculated with the objective to minimize the total 

variance across each gene for all samples. DESeq2 then estimates 

the dispersion for each gene (a measure of how much a sample 

fluctuates around a mean value) followed by a statistical test (for 

a detailed explanation, we recommend the resources on biocon-

ductor.org, for example The theory behind DESeq 2).

Variations in sequencing depth can be kept low by adjusting the 

libraries in a lane pool according to their molarity and size distri-

bution prior to sequencing. Equimolar pooling of each individual 

library enables to sequence each sample with equal read depth 

during the sequencing run. Even though normalizations can cor-

rect variations in read depth, reliable high-quality results are ob-

tained when the variations are already small to begin with. Larger 

variations can lead to more noise and changes in expression can 

be harder to detect, especially when the change is rather moder-

ate.

Tools such as DESeq2 and edgeR are also capable of performing 

tests for classical pairwise comparisons (e.g., control vs. treatment) 

and more complex scenarios such as time series or effects of a 

treatment on different genotypes. These complex setups are test-

ed with a likelihood ratio test (to learn more about how these 

tests are performed, we recommend the resources on Biocon-

ductor.org, for example: likelihood ratio test).

Functional Enrichment Analysis

After differential gene expression analysis has been performed, 

researchers often desire to gain insight into the cellular functions 

and molecular processes affected. One way to address this chal-

lenge is to annotate genes with metadata which describe their 

function. This can be achieved by analyzing information on 

gene-phenotype relationships, associated gene pathways, enzy-

matic classification of gene products, or organelle function.  Once 

genes have been annotated with this meta data, one can cross-

check if genes of a specific pathway are enriched in the differen-

tially regulated genes derived from the RNA seq analysis (Fig. 5). 

The Gene Ontology (GO) Consortium provides an excellent re-

source of metadata in the form of standardized terms, intended 

to represent current scientific knowledge of the functions of 

genes. GO term annotation and enrichment analysis can be per-

formed online on the Consortiums webpage, or with standalone 

tools like clusterProfiler9. Both options take two lists of gene IDs as 

input: a background list (non-differentially regulated genes) and a 

list to test (differentially regulated genes). The standalone tool 

clusterProfiler, also allows users to incorporate other resources 

such as KEGG, Reactome, WikiPathways or the molecular signa-

tures database.

ple 100 tests with a significance threshold of 0.01, you have the 

probability of encountering 1 significant result just by chance. 

To account for this multiple testing correction needs to be per-

formed. This can be done for instance by lowering the p-value 

threshold to 0.0001 (0.01÷100). This approach is called Bonfer-

roni correction and is rarely applied in differential gene expres-

sion testing due to its very high stringency. This stringency can 

limit the discovery of true positive events severely (when test-

ing 10,000 genes this would result in a p-value cutoff of 1×10-7). 

Therefore, the most common approach is to control the false 

discovery rate (FDR) via the Benjamini-Hochberg method. In 

this case the researcher can set the allowed proportion of false 

positive discoveries (e.g., 0.05 or 0.1) that is acceptable for him. 

The p-values from each test will then be adjusted based on the 

likelihood of their FDR. These corrected p-values are thus often 

called adjusted p-values (padj) or q-values.

Figure 5 | Pathway analysis identifies key genes in known pathways which are 
altered in relation to specific conditions tested in the experiment. Genes can be 
up- or down-regulated leading to activated or deactivated pathways. Known 
interactions between pathways can help decipher signaling or regulatory cas-
cades that are affected under the tested condition(s) and regulatory networks 
can be built towards the understanding of physiological changes caused by 
the perturbation that was tested.
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https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#theory-behind-deseq2
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#likelihood-ratio-test
http://geneontology.org/
https://www.genome.jp/kegg/
https://reactome.org/
https://www.wikipathways.org/index.php/WikiPathways
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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3. Quantification

Using Sample-to-sample Correlation and Principal Component Analysis to QC Differential Gene Expression

As precision and accuracy of statistical testing is influenced by the 

reproducibly and variation within the experiment, it is useful to 

assess the overall similarity between samples when performing 

differential gene expression testing. Additionally, one should ex-

plore if the observed variation is indeed predominantly caused by 

the experimental conditions or influenced by other technical or 

biological aspects (e.g., the day of RNA isolation, operator, age, or 

sex of the organism etc.) This can be investigated by examining 

sample-to-sample correlations and by performing a principal 

component analysis (PCA, Fig. 6).

Besides differential gene expression statistics, analysis software 

such as DESeq2 can also produce normalized and linearized ex-

pression data. This output can be used to calculate correlation 

coefficients between samples. Plotting these values in the form of 

a clustered heatmap is a quick and visually intuitive way to assess 

reproducibly between replicates and check for extreme outliners. 

On the other hand, PCA is a transformation technique which aims 

to reduce the dimensionality of data while retaining maximal vari-

ation in the data set. Gene expression data is highly dimensional, 

as each sample consists of several thousand data points. During 

PCA analysis, the information contained in these dimensions is 

transformed into separate uncorrelated vectors (i.e., principal 

components). Principle components are ordered in a way in 

which the first few retain most of the variation present in the orig-

inal dimensions. Therefore, plotting the two principal compo-

nents allow the user to obtain a summary of the variation present 

in the experiment (See here for a more detailed and visual expla-

nation). In this plot (Fig. 6), one can investigate if the assigned 

samples groups stratify according to the experimental setup 

(control vs. treatment) or based on other properties (RNA isola-

tion day, age, sex etc.). When sample groups stratify in relation to 

the other properties listed above, the differentially expressed 

genes are most likely causally related to them and not the exper-

imental setup.  The DESeq2 manual has an excellent tutorial that 

describes these quality control steps in practice.
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Figure 6 | Principal Component Analysis of treated and untreated control sam-
ples. RNA-Seq libraries were produced from two different conditions. Differen-
tial expression values were then evaluated in a Principal Component Analysis 
(PCA). The Principal Component 1 (PC1) on the x-axis clearly separates both 
conditions, explaining 62 % of the variability seen in the treated vs. untreated 
control samples clearly separating the two conditions. Replicates from both 
conditions cluster with less variance in Principle Component 2 (PC2).

Using Spike-in Controls to Validate Sample-to-sample Fold-change

Spike-in controls, such as the ERCCs can be obtained as different 

mixes. These mixes contain the same spike-ins but at varied con-

centrations and are helpful when spiked into different sample 

types (e.g., control vs. treatment). When these samples are then 

compared during differential gene expression analysis, they can 

be utilized to quality control fold-change estimates. Similarly, Lex-

ogen’s SIRVs, which are available in equimolar or non-equimolar 

concentrations, can also be used to estimate sample-to-sample 

fold-changes when spiked in at comparable percentages. In addi-

tion, SIRVs contain various synthetic isoforms and thus simulate 

the full transcriptomic complexity. This feature makes them very 

useful to test RNA-Seq and data analysis workflows especially for 

evaluations on transcript level.

4. Tying it all together

Combining the aforementioned analysis steps into a single auto-

mated workflow is referred to as a “pipeline”. In the past, bioinfor-

maticians mainly wrote pipelines tailored to their specific systems 

and needs. This was most commonly done using the UNIX shell 

programming language, bash. However, as the field of bioinfor-

matics has rapidly matured, the demand for reproducible and 

sharable data analysis workflows has greatly increased. This de-

mand has led to the development of sophisticated pipeline man-

agers such as Snakemake or Nextflow, which enable greater re-

producibility and ease of sharing.

NextFlow is also utilized by the nf-core project10 which is a com-

munity effort to build curated data analysis pipelines for various 

NGS sequencing applications. These pipelines are open source, 

well tested, and adhere to stringent quality standards. They pro-

vide an excellent starting point for researchers new to NGS data 

analysis and can be downloaded via the nf-core page. As this is a 

community effort, it is highly encouraged that researchers con-

tribute and share their own pipelines!

https://towardsdatascience.com/pca-eigenvectors-and-eigenvalues-1f968bc6777a
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#data-quality-assessment-by-sample-clustering-and-visualization
https://www.lexogen.com/sirvs/sirv-sets/
https://snakemake.github.io/
https://www.nextflow.io/
https://nf-co.re/
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5. Some Actionable Advice

After carefully analyzing your data and controlling the individual 

step to match commonly defined statistics and expected results 

(e.g., for spike-in controls), researchers are well equipped to pro-

ceed to visualizing their data and providing conclusive arguments 

to solve their individual research question.

To ensure the success of a sequencing project early on, it is highly 

recommended to consult with an experienced bioinformatician 

already during the experimental planning stages or revert to a 

service provider to discuss the project. For researchers without 

bioinformatics staff or experience in data analysis, third party data 

analysis platforms provide a convenient solution and allow re-

searchers to analyze their own data using validated pipelines.

Lexogen also offers RNA-Seq data analysis service and provides 

intuitive plug-and-play data analysis pipelines on our partner 

platforms. For more information and a comprehensive overview 

of the various pipelines visit our FAQ page on Data Analysis Solu-

tions and consult with us!

https://doi.org/10.1073/pnas.1510461112
https://doi.org/10.1073/pnas.1525116113
https://doi.org/10.1093/bioinformatics/bts356
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https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://faqs.lexogen.com/faq/Data-Analysis-Solutions.63701123.html
https://faqs.lexogen.com/faq/Data-Analysis-Solutions.63701123.html
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